Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Data ; 11(1): 287, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467652

RESUMEN

The forest area of China is the fifth largest of any country, and unlike in many other countries, in recent decades its area has been increasing. However, there are substantial differences in estimates of the amount of carbon this forest contains, ranging from 3.92 to 17.02 Pg C for circa 2007. This makes it unclear how the changes in China's forest area contribute to the global carbon cycle. We generate a circa 2007 aboveground biomass (AGB) map at a resolution of 50 m using optical, radar and LiDAR satellite data. Our estimates of total carbon stored in the forest in China was 9.52 Pg C, with an average forest AGB of 104 Mg ha-1. Compared with three existing AGB maps, our AGB map showed better correlation with a distributed set of forest inventory plots. In addition, our high resolution AGB map provided more details on spatial distribution of forest AGB, and is likely to help understand the carbon storage changes in China's forest.


Asunto(s)
Biomasa , Monitoreo del Ambiente , Bosques , Carbono , China , Árboles
4.
Commun Earth Environ ; 4(1): 392, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665189

RESUMEN

Protected areas are increasingly promoted for their capacity to sequester carbon, alongside biodiversity benefits. However, we have limited understanding of whether they are effective at reducing deforestation and degradation, or promoting vegetation growth, and the impact that this has on changes to aboveground woody carbon stocks. Here we present a new satellite radar-based map of vegetation carbon change across southern Africa's woodlands and combine this with a matching approach to assess the effect of protected areas on carbon dynamics. We show that protection has a positive effect on aboveground carbon, with stocks increasing faster in protected areas (+0.53% per year) compared to comparable lands not under protection (+0.08% per year). The positive effect of protection reflects lower rates of deforestation (-39%) and degradation (-25%), as well as a greater prevalence of vegetation growth (+12%) inside protected lands. Areas under strict protection had similar outcomes to other types of protection after controlling for differences in location, with effect scores instead varying more by country, and the level of threat. These results highlight the potential for protected areas to sequester aboveground carbon, although we caution that in some areas this may have negative impacts on biodiversity, and human wellbeing.

5.
Sci Rep ; 12(1): 18252, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309592

RESUMEN

Mining is a vital part of the global, and many national, economies. Mining also has the potential to drive extensive land cover change, including deforestation, with impacts reaching far from the mine itself. Understanding the amount of deforestation associated with mining is important for conservationists, governments, mining companies, and consumers, yet accurate quantification is rare. We applied statistical matching, a quasi-experimental methodology, along with Bayesian hierarchical generalized linear models to assess the impact on deforestation of new mining developments in Zambia from 2000 to present. Zambia is a globally significant producer of minerals and mining contributes ~ 10% of its gross domestic product and ~ 77% of its exports. Despite extensive deforestation in mining impacted land, we found no evidence that any of the 22 mines we analysed increased deforestation compared with matched control sites. The extent forest lost was therefore no different than would likely have happened without the mines being present due to other drivers of deforestation in Zambia. This suggests previous assessments based on correlative methodologies may overestimate the deforestation impact of mining. However, mining can have a range of impacts on society, biodiversity, and the local environment that are not captured by our analysis.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Conservación de los Recursos Naturales/métodos , Zambia , Teorema de Bayes , Biodiversidad
6.
Sci Rep ; 12(1): 1588, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35091635

RESUMEN

Native vegetation across the Brazilian Cerrado is highly heterogeneous and biodiverse and provides important ecosystem services, including carbon and water balance regulation, however, land-use changes have been extensive. Conservation and restoration of native vegetation is essential and could be facilitated by detailed landcover maps. Here, across a large case study region in Goiás State, Brazil (1.1 Mha), we produced physiognomy level maps of native vegetation (n = 8) and other landcover types (n = 5). Seven different classification schemes using different combinations of input satellite imagery were used, with a Random Forest classifier and 2-stage approach implemented within Google Earth Engine. Overall classification accuracies ranged from 88.6-92.6% for native and non-native vegetation at the formation level (stage-1), and 70.7-77.9% for native vegetation at the physiognomy level (stage-2), across the seven different classifications schemes. The differences in classification accuracy resulting from varying the input imagery combination and quality control procedures used were small. However, a combination of seasonal Sentinel-1 (C-band synthetic aperture radar) and Sentinel-2 (surface reflectance) imagery resulted in the most accurate classification at a spatial resolution of 20 m. Classification accuracies when using Landsat-8 imagery were marginally lower, but still reasonable. Quality control procedures that account for vegetation burning when selecting vegetation reference data may also improve classification accuracy for some native vegetation types. Detailed landcover maps, produced using freely available satellite imagery and upscalable techniques, will be important tools for understanding vegetation functioning at the landscape scale and for implementing restoration projects.

7.
New Phytol ; 232(2): 579-594, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34292602

RESUMEN

Positive biodiversity-ecosystem function relationships (BEFRs) have been widely documented, but it is unclear if BEFRs should be expected in disturbance-driven systems. Disturbance may limit competition and niche differentiation, which are frequently posited to underlie BEFRs. We provide the first exploration of the relationship between tree species diversity and biomass, one measure of ecosystem function, across southern African woodlands and savannas, an ecological system rife with disturbance from fire, herbivores and humans. We used > 1000 vegetation plots distributed across 10 southern African countries and structural equation modelling to determine the relationship between tree species diversity and above-ground woody biomass, accounting for interacting effects of resource availability, disturbance by fire, tree stem density and vegetation type. We found positive effects of tree species diversity on above-ground biomass, operating via increased structural diversity. The observed BEFR was highly dependent on organismal density, with a minimum threshold of c. 180 mature stems ha-1 . We found that water availability mainly affects biomass indirectly, via increasing species diversity. The study underlines the close association between tree diversity, ecosystem structure, environment and function in highly disturbed savannas and woodlands. We suggest that tree diversity is an under-appreciated determinant of wooded ecosystem structure and function.


Asunto(s)
Ecosistema , Árboles , Biodiversidad , Bosques , Pradera
8.
Science ; 366(6463)2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31624179

RESUMEN

Bastin et al (Reports, 5 July 2019, p. 76) state that the restoration potential of new forests globally is 205 gigatonnes of carbon, conclude that "global tree restoration is our most effective climate change solution to date," and state that climate change will drive the loss of 450 million hectares of existing tropical forest by 2050. Here we show that these three statements are incorrect.


Asunto(s)
Bosques , Árboles , Carbono , Cambio Climático
9.
Sci Rep ; 9(1): 11931, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31417153

RESUMEN

The increased demand for palm oil has led to an expansion of oil palm concessions in the tropics, and the clearing of abundant forest as a result. However, concessions are typically incompletely planted to varying degrees, leaving much land unused. The remaining forests within such concessions are at high risk of deforestation, as there are normally no legal hurdles to their clearance, therefore making them excellent targets for conservation. We investigated the location of oil palm plantations and the other major crop - rubber plantations in southern Myanmar, and compared them to concession boundaries. Our results show that rubber plantations cover much larger areas than oil palm in the region, indicating that rubber is the region's preferred crop. Furthermore, only 15% of the total concession area is currently planted with oil palm (49,000 ha), while 25,000 ha is planted outside concession boundaries. While this may in part be due to uncertain and/or changing boundaries, this leaves most of the concession area available for other land uses, including forest conservation and communities' livelihood needs. Reconsidering the remaining concession areas can also significantly reduce future emission risks from the region.


Asunto(s)
Arecaceae/fisiología , Bosques , Aceite de Palma/química , Agricultura , Conservación de los Recursos Naturales , Geografía , Mianmar
11.
Nat Commun ; 9(1): 3045, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30072779

RESUMEN

Land use carbon fluxes are major uncertainties in the global carbon cycle. This is because carbon stocks, and the extent of deforestation, degradation and biomass growth remain poorly resolved, particularly in the densely populated savannas which dominate the tropics. Here we quantify changes in aboveground woody carbon stocks from 2007-2010 in the world's largest savanna-the southern African woodlands. Degradation is widespread, affecting 17.0% of the wooded area, and is the source of 55% of biomass loss (-0.075 PgC yr-1). Deforestation losses are lower (-0.038 PgC yr-1), despite deforestation rates being 5× greater than existing estimates. Gross carbon losses are therefore 3-6x higher than previously thought. Biomass gains occurred in 48% of the region and totalled +0.12 PgC yr-1. Region-wide stocks are therefore stable at ~5.5 PgC. We show that land cover in African woodlands is highly dynamic with globally high rates of degradation and deforestation, but also extensive regrowth.

12.
Nature ; 559(7715): 527-534, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30046067

RESUMEN

Tropical forests make an approximately neutral contribution to the global carbon cycle, with intact and recovering forests taking in as much carbon as is released through deforestation and degradation. In the near future, tropical forests are likely to become a carbon source, owing to continued forest loss and the effect of climate change on the ability of the remaining forests to capture excess atmospheric carbon dioxide. This will make it harder to limit global warming to below 2 °C. Encouragingly, recent international agreements commit to halting deforestation and degradation, but a lack of fundamental data for use in monitoring and model design makes policy action difficult.


Asunto(s)
Ciclo del Carbono , Bosques , Calentamiento Global , Árboles/metabolismo , Clima Tropical , Animales , Secuestro de Carbono , Política Ambiental , Calentamiento Global/prevención & control , Desarrollo Sostenible
13.
Sci Rep ; 8(1): 1600, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29371623

RESUMEN

Understanding forest loss patterns in Amazonia, the Earth's largest rainforest region, is critical for effective forest conservation and management. Following the most detailed analysis to date, spanning the entire Amazon and extending over a 14-year period (2001-2014), we reveal significant shifts in deforestation dynamics of Amazonian forests. Firstly, hotspots of Amazonian forest loss are moving away from the southern Brazilian Amazon to Peru and Bolivia. Secondly, while the number of new large forest clearings (>50 ha) has declined significantly over time (46%), the number of new small clearings (<1 ha) increased by 34% between 2001-2007 and 2008-2014. Thirdly, we find that small-scale low-density forest loss expanded markedly in geographical extent during 2008-2014. This shift presents an important and alarming new challenge for forest conservation, despite reductions in overall deforestation rates.


Asunto(s)
Conservación de los Recursos Naturales , Bosque Lluvioso , Bolivia , Brasil , Geografía , Perú
14.
Sci Rep ; 7(1): 3505, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28615620

RESUMEN

There is an urgent need to quantify anthropogenic influence on forest carbon stocks. Using satellite-based radar imagery for such purposes has been challenged by the apparent loss of signal sensitivity to changes in forest aboveground volume (AGV) above a certain 'saturation' point. The causes of saturation are debated and often inadequately addressed, posing a major limitation to mapping AGV with the latest radar satellites. Using ground- and lidar-measurements across La Rioja province (Spain) and Denmark, we investigate how various properties of forest structure (average stem height, size and number density; proportion of canopy and understory cover) simultaneously influence radar backscatter. It is found that increases in backscatter due to changes in some properties (e.g. increasing stem sizes) are often compensated by equal magnitude decreases caused by other properties (e.g. decreasing stem numbers and increasing heights), contributing to the apparent saturation of the AGV-backscatter trend. Thus, knowledge of the impact of management practices and disturbances on forest structure may allow the use of radar imagery for forest biomass estimates beyond commonly reported saturation points.


Asunto(s)
Bosques , Radar , Imágenes Satelitales/métodos , Procesamiento de Imagen Asistido por Computador , Modelos Biológicos
15.
Sci Rep ; 7: 41902, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28186155

RESUMEN

Protected areas (PAs) aim to protect multiple ecosystem services. However, not all are well protected. For the first time, using published carbon and forest loss maps, we estimate carbon emissions in large forest PAs in tropical countries (N = 2018). We found 36 ± 16 Pg C stored in PA trees, representing 14.5% of all tropical forest biomass carbon. However the PAs lost forest at a mean rate of 0.18% yr-1 from 2000-2012. Lower protection status areas experienced higher forest losses (e.g. 0.39% yr-1 in IUCN cat III), yet even highest status areas lost 0.13% yr-1 (IUCN Cat I). Emissions were not evenly distributed: 80% of emissions derived from 8.3% of PAs (112 ± 49.5 Tg CO2 yr-1; n = 171). Unsurprisingly the largest emissions derived from PAs that started with the greatest total forest area; accounting for starting forest area and relating that to carbon lost using a linear model (r2 = 0.41), we found 1.1% outlying PAs (residuals >2σ; N = 23), representing 1.3% of the total PA forest area, yet causing 27.3% of all PA emissions. These results suggest PAs have been a successful means of protecting biomass carbon, yet a subset causing a disproportionately high share of emissions should be an urgent priority for management interventions.

16.
Nature ; 542(7639): 86-90, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28077869

RESUMEN

Peatlands are carbon-rich ecosystems that cover just three per cent of Earth's land surface, but store one-third of soil carbon. Peat soils are formed by the build-up of partially decomposed organic matter under waterlogged anoxic conditions. Most peat is found in cool climatic regions where unimpeded decomposition is slower, but deposits are also found under some tropical swamp forests. Here we present field measurements from one of the world's most extensive regions of swamp forest, the Cuvette Centrale depression in the central Congo Basin. We find extensive peat deposits beneath the swamp forest vegetation (peat defined as material with an organic matter content of at least 65 per cent to a depth of at least 0.3 metres). Radiocarbon dates indicate that peat began accumulating from about 10,600 years ago, coincident with the onset of more humid conditions in central Africa at the beginning of the Holocene. The peatlands occupy large interfluvial basins, and seem to be largely rain-fed and ombrotrophic-like (of low nutrient status) systems. Although the peat layer is relatively shallow (with a maximum depth of 5.9 metres and a median depth of 2.0 metres), by combining in situ and remotely sensed data, we estimate the area of peat to be approximately 145,500 square kilometres (95 per cent confidence interval of 131,900-156,400 square kilometres), making the Cuvette Centrale the most extensive peatland complex in the tropics. This area is more than five times the maximum possible area reported for the Congo Basin in a recent synthesis of pantropical peat extent. We estimate that the peatlands store approximately 30.6 petagrams (30.6 × 1015 grams) of carbon belowground (95 per cent confidence interval of 6.3-46.8 petagrams of carbon)-a quantity that is similar to the above-ground carbon stocks of the tropical forests of the entire Congo Basin. Our result for the Cuvette Centrale increases the best estimate of global tropical peatland carbon stocks by 36 per cent, to 104.7 petagrams of carbon (minimum estimate of 69.6 petagrams of carbon; maximum estimate of 129.8 petagrams of carbon). This stored carbon is vulnerable to land-use change and any future reduction in precipitation.


Asunto(s)
Secuestro de Carbono , Carbono/análisis , Suelo/química , Américas , Asia , Dióxido de Carbono/metabolismo , Congo , Bosques , Mapeo Geográfico , Lluvia , Factores de Tiempo , Clima Tropical , Humedales
17.
Carbon Balance Manag ; 11(1): 21, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27656245

RESUMEN

BACKGROUND: It is essential that the human race limits the environmental damage created by our consumption. A realistic pathway to limiting consumption would be to transition to a system where materials are conserved and cycled through the economy as many times as possible and as slowly as possible, greatly reducing the greenhouse gas intensive processes of resource extraction, resource processing and waste management. Material flow analysis (MFA) is a method used to understand how materials are consumed within a nation. In this study, we attempt a MFA for Scotland which links carbon emissions to material consumption using data directly based on the mass of materials used in the Scottish economy. It is the first time such an analysis has been conducted for an economy in its entirety. RESEARCH AIMS: This study aims to create a detailed material flow account (MFA) for Scotland, compare the environmental impacts and possible policy implications of different future material consumption scenarios and consider two materials, steel and neodymium, in detail. RESULTS: The model estimated that 11.4 Mg per capita of materials are consumed per year in Scotland, emitting 10.7 Mg CO2e per capita in the process, of which, 6.7 Mg CO2e per capita falls under territorial carbon accounting. Only the circular economy scenario for 2050 allowed for increases in living standards without increases in carbon emissions and material consumption. This result was mirrored in the steel and neodymium case studies-environmental impacts can be minimised by a national strategy that first reduces use, and then locally reuses materials. CONCLUSIONS: Material consumption accounts for a large proportion of the carbon emissions of Scotland. Strategic dematerialisation, particular of materials such as steel, could support future efforts to reduce environmental impact and meet climate change targets. However, policy makers should consider consumption carbon accounting boundaries, as well as territorial boundaries, if carbon savings are to be maximised. This is because imports and recyclate sent abroad can have significant effect on the carbon emissions from material consumption. We demonstrate that the more circular an economy is, the smaller the difference between global and territorial carbon emissions, and therefore that climate change targets based solely on territorial carbon emissions create perverse incentives. The study also found that there could be areas of economic development which are compatible with environmental aims, based around encouraging reprocessing activities in developed nations.

18.
Glob Chang Biol ; 22(4): 1406-20, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26499288

RESUMEN

We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N-23.4 S) of 375 Pg dry mass, 9-18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15-21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha(-1) vs. 21 and 28 Mg ha(-1) for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets.


Asunto(s)
Biomasa , Mapas como Asunto , Conjuntos de Datos como Asunto , Modelos Teóricos , Árboles , Clima Tropical
19.
Ecology ; 96(1): 31-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26236887

RESUMEN

The physical characteristics of landscapes place fundamental constraints on vegetation growth and ecosystem function. In actively eroding landscapes, many of these characteristics are controlled by long-term erosion rates: increased erosion rates generate steeper topography and reduce the depth and extent of weathering, limiting moisture storage capacity and impacting nutrient availability. Despite the potentially important bottom-up control that erosion rates place on substrate characteristics, the relationship between the two is largely unexplored. We investigate spatial variations in aboveground biomass (AGB) across a structurally diverse mixed coniferous/deciduous forest with an order of magnitude erosion-rate gradient in the Northern Californian Sierra Nevada, USA, using high resolution LiDAR data and field plots. Mean basin slope, a proxy for erosion rate, accounts for 32% of variance in AGB within our field area (P < 0.001), considerably outweighing the effects of mean annual precipitation, temperature, and bedrock lithology. This highlights erosion rate as a potentially important, but hitherto unappreciated, control on AGB and forest structure.


Asunto(s)
Bosques , Suelo , California , Tecnología de Sensores Remotos
20.
Glob Chang Biol ; 20(10): 3238-55, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24902948

RESUMEN

The carbon budget of the tropics has been perturbed as a result of human influences. Here, we attempt to construct a 'bottom-up' analysis of the biological components of the budget as they are affected by human activities. There are major uncertainties in the extent and carbon content of different vegetation types, the rates of land-use change and forest degradation, but recent developments in satellite remote sensing have gone far towards reducing these uncertainties. Stocks of carbon as biomass in tropical forests and woodlands add up to 271 ± 16 Pg with an even greater quantity of carbon as soil organic matter. Carbon loss from deforestation, degradation, harvesting and peat fires is estimated as 2.01 ± 1.1 Pg annum(-1); while carbon gain from forest and woodland growth is 1.85 ± 0.09 Pg annum(-1). We conclude that tropical lands are on average a small carbon source to the atmosphere, a result that is consistent with the 'top-down' result from measurements in the atmosphere. If they were to be conserved, they would be a substantial carbon sink. Release of carbon as carbon dioxide from fossil fuel burning in the tropics is 0.74 Pg annum(-1) or 0.57 MgC person(-1) annum(-1) , much lower than the corresponding figures from developed regions of the world.


Asunto(s)
Ciclo del Carbono , Carbono/análisis , Bosques , Suelo/química , Biomasa , Carbono/metabolismo , Secuestro de Carbono , Conservación de los Recursos Naturales , Incendios , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...